High density semipacked separation columns with optimized atomic layer deposited phases
نویسندگان
چکیده
منابع مشابه
Atomic layer deposited high-k nanolaminate capacitors
Al2O3–Ta2O5 nanolaminate films were prepared via atomic layer deposition (ALD) on silicon with a single overall composition and thickness, but with a varying number of Al2O3/Ta2O5 bilayers. The composition of the films was roughly 57% Al2O3 and 43% Ta2O5 and the total film thickness was held at 58 nm, while the number of bilayers was varied from 3 to 192 by changing the target bilayer thickness...
متن کاملAtomic-Layer-Deposited High-k Dielectric Integration on Epitaxial Graphene
The scaling of silicon-based MOSFET technology beyond the 22 nm node is challenging. Further progress requires new channel materials such as Ge, III-V semiconductors, carbon nanotubes (CNTs) and graphene. Perfect top-gate dielectric stacks are needed in order to sustain their potential device performance for carbon nanoelectronics. Due to the inert nature of carbon surfaces of CNTs and graphene...
متن کاملGrain boundary structures of atomic layer deposited
Grain boundary plays an important role in determining the physical properties and chemical stability of the materials. In particular, the structures of grain boundaries in atomic layer deposited TiN film may be one of the main factors to dominate the reliability and performance of ULSI devices with multilayer structure of Cu-based interconnects. In this work, the characteristics of grain bounda...
متن کاملInversion-mode InxGa1-xAs MOSFETs (x=0.53,0.65,0.75) with atomic-layer- deposited high-k dielectrics
High-performance inversion-type enhancement-mode (E-mode) nchannel MOSFETs on In-rich InGaAs using ALD Al2O3 as high-k gate dielectrics are demonstrated. The maximum drain current, peak transconductance, and the effective electron velocity of 1.0 A/mm, 0.43 S/mm and 1.0x10 cm/s at drain voltage of 2.0 V are achieved at 0.75-μm gate length devices. The device performance of In-rich InGaAs NMOSFE...
متن کاملGrain boundary structures of atomic layer deposited TiN
Grain boundary plays an important role in determining the physical properties and chemical stability of the materials. In particular, the structures of grain boundaries in atomic layer deposited TiN film may be one of the main factors to dominate the reliability and performance of ULSI devices with multilayer structure of Cu-based interconnects. In this work, the characteristics of grain bounda...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Sensors and Actuators B: Chemical
سال: 2017
ISSN: 0925-4005
DOI: 10.1016/j.snb.2016.11.046